Life cycle assessment of switchgrass-derived ethanol as transport fuel

نویسندگان

  • Yu Bai
  • Lin Luo
  • Ester van der Voet
چکیده

Background, aim, and scope The increasing gasoline price, the depletion of fossil resources, and the negative environmental consequences of driving with petroleum fuels have driven the development of alternative transport fuels. Bioethanol, which is converted from cellulosic feedstocks, has attracted increasing attention as one such alternative. This study assesses the environmental impact of using ethanol from switchgrass as transport fuel and compares the results with the ones of gasoline to analyze the potential of developing switchgrass ethanol as an environmentally sustainable transport fuel. Methods The standard framework of life cycle assessment from International Standards Organization was followed. To compare the environmental impact of driving with E10 and E85 with gasoline, “power to wheels for 1-km driving of a midsize car” was defined as the functional unit. The product system consists of all relevant processes, from agriculture of switchgrass, throughout the production of ethanol, blending ethanol with gasoline to produce E85 and E10, to the final vehicle operations. The transport of all products and chemicals is also included in the system boundaries. An allocation based on energy content was applied as a baseline, and market price-based allocation was applied for a sensitivity analysis. Results and discussion With regard to global warming potential, driving with switchgrass ethanol fuels leads to less greenhouse gas (GHG) emissions than gasoline: 65% reduction may be achieved in the case of E85. Except for global warming and resource depletion, driving with ethanol fuels from switchgrass does not offer environmental benefits in the other impact categories compared to gasoline. Switchgrass agriculture is the main contributor to eutrophication, acidification, and toxicity. Emissions from bioethanol production cause a greater impact in photochemical smog formation for ethanol-fueled driving. Conclusions and recommendations Switchgrass ethanol indeed leads to less GHG emissions than gasoline on a life cycle basis; however, the problem has been shifted to other impacts. Improvement of switchgrass yields and development of ethanol production technologies may be the key to lower environmental impact in the future. For a more comprehensive evaluation of using bioethanol as transport fuel, more impact categories need to be included in the life cycle impact assessment. A comparison with bioethanol from other feedstocks, based on similar methodological choices and background data, would provide more insight in the environmental benefits of switchgrass as a feedstock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient con...

متن کامل

Review Transport biofuels – a life-cycle assessment approach

Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil transport fuels as to the emission of eutrophying and acidifying substances. Lifecycle studies of ...

متن کامل

Modeling switchgrass derived cellulosic ethanol distribution in the United States.

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options i...

متن کامل

Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.

Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inpu...

متن کامل

Biosphere-atmosphere exchange of volatile organic compounds over C4 biofuel crops

Significant amounts of ethanol are produced from biofuel crops such as corn and, in the future, likely switchgrass. The atmospheric effects of growing these plant species on a large scale are investigated here by measuring the plant-atmosphere exchange of volatile organic compounds (VOCs). Field grown corn and switchgrass emit VOCs at flux rates of 4.4 nmolC m 2 s 1 (10 9 mol carbon per square ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010